Spectral Methods for Periodic Initial Value Problems with Nonsmooth Data
نویسندگان
چکیده
In this paper we consider hyperbolic initial value problems subject to periodic boundary conditions with nonsmooth data. We show that if we filter the data and solve the problem by the Galerkin-Collocation method, recently proposed by us, then we can recover pointwise values with spectral accuracy, provided that the actual solution is piecewise smooth. For this we have to perform a local smoothing of the computed solution.
منابع مشابه
Trigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems
In this paper, we present a new two-step trigonometrically fitted symmetric Obrechkoff method. The method is based on the symmetric two-step Obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numeri...
متن کاملSolving Some Initial-Boundary Value Problems Including Non-classical Cases of Heat Equation By Spectral and Countour Integral Methods
In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...
متن کاملSOLVING SINGULAR ODES IN UNBOUNDED DOMAINS WITH SINC-COLLOCATION METHOD
Spectral approximations for ODEs in unbounded domains have only received limited attention. In many applicable problems, singular initial value problems arise. In solving these problems, most of numerical methods have difficulties and often could not pass the singular point successfully. In this paper, we apply the sinc-collocation method for solving singular initial value problems. The ability...
متن کاملA numerical comparison of Chebyshev methods for solving fourth order semilinear initial boundary value problems
In solving semilinear initial boundary value problems with prescribed non-periodic boundary conditions using implicit-explicit and implicit time stepping schemes, both the function and derivatives of the function may need to be computed accurately at each time step. To determine the best Chebyshev collocation method to do this, the accuracy of the real space Chebyshev differentiation, spectral ...
متن کاملLocalization of Nonsmooth Lower and Upper Functions for Periodic Boundary Value Problems
In this paper we present conditions ensuring the existence and localization of lower and upper functions of the periodic boundary value problem u + k u = f(t, u), u(0) = u(2 ), u(0) = u(2 ), k ∈ , k 6= 0. These functions are constructed as solutions of some related generalized linear problems and can be nonsmooth in general.
متن کامل